Strongly generating elements in finite and profinite groups
نویسندگان
چکیده
Given a finite group G and an element g∈G, we may compare the expected number e(G) of elements needed to generate e(G,g) together with g. We address following question: how large can difference e(G)−e(G,g) be? prove that in general this be arbitrarily large. For example for every positive integer n there exists 2-generated such e(G)≥n but e(G,g)≤5 some g∈G. However, if derived subgroup is nilpotent, then e(G)−e(G,g)≤11
منابع مشابه
Generating Random Elements in Finite Groups
Let G be a finite group of order g. A probability distribution Z on G is called ε-uniform if |Z(x) − 1/g| ≤ ε/g for each x ∈ G. If x1, x2, . . . , xm is a list of elements of G, then the random cube Zm := Cube(x1, . . . , xm) is the probability distribution where Zm(y) is proportional to the number of ways in which y can be written as a product x1 1 x ε2 2 · · · xεm m with each εi = 0 or 1. Let...
متن کاملMaximal Subgroups in Finite and Profinite Groups
We prove that if a finitely generated profinite group G is not generated with positive probability by finitely many random elements, then every finite group F is obtained as a quotient of an open subgroup of G. The proof involves the study of maximal subgroups of profinite groups, as well as techniques from finite permutation groups and finite Chevalley groups. Confirming a conjecture from Ann....
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2023
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.12.005